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The Hippo pathway was discovered as a signal trans-
duction pathway that regulates organ size in Drosophila
melanogaster. It is composed of three components: cell
surface upstream regulators including cell adhesion
molecules and cell polarity complexes; a kinase cascade
comprising two serine-threonine kinases with regulators
and adaptors; and a downstream target, a transcription
coactivator. The coactivator mediates the transcription
of cell proliferation-promoting and anti-apoptotic
genes. The pathway negatively regulates the coactivator
to restrict cell proliferation and to promote cell death.
Thus, the pathway prevents tissue overgrowth and
tumourigenesis. The framework of the pathway is con-
served in mammals. A dysfunction of the pathway is
frequently detected in human cancers and correlates
with a poor prognosis. Recent works indicated that
the Hippo pathway plays an important role in tissue
homoeostasis through the regulation of stem cells, cell
differentiation and tissue regeneration.

Keywords: apoptosis/cancer/kinase/regeneration/
signal transduction.

Abbreviations: AMOT, angiomotin; AMOTL,
AMOT-like; ATM, ataxia telangiectasia mutated;
aPKC, atypical protein kinase C; App, approximated;
ALL, acute lymphocytic leukaecmia; ASPP,
apoptosis-stimulating protein of p53; CDC, cell
division cycle; DCO, discs overgrown; EBP50, Ezrin-
radixin-moesin-binding phosphoprotein 50; EGF,
epidermal growth factor; EMT, epithelial-mesenchy-
mal transition; Fj, Four-jointed; FERM, 4.1 ezrin
radixin moesin; FRMD6, FERM domain-containing
protein 6; GTP, guanosine 5-triphosphate; JNK,
c-Jun N-terminal kinase; LATS, large tumour sup-
pressor; Lgl, lethal giant larvae; MOAP, modulator
of apoptosis; MOB, Mps one binder; MST,
mammalian Ste20-like kinase; NDR, Nuclear Dbf2-
related; Nf2, neurofibromin 2 in human and neuro-
fibromatosis 2 in mouse; NHERF, Nat/H™
exchanger regulatory factor; NIMA, never in mitosis
A; PML, promyelocytic leukaemia; RA, Ras-
association; RASSF, Ras-association domain family;
SARAH, Salvador/RASSF/Hippo; Shh, Sonic

hedgehog; TAZ, Transcriptional coactivator with
PDZ-binding motif; TEAD, TEA domain family;
TGF-B, transforming growth factor-f; TNF-a,
tumour necrosis factor-a; Tre, tricornered; YAP,
Yes-associated protein.

The Hippo pathway is a signalling pathway that regu-
lates cell proliferation and cell death. It was originally
discovered in Drosophila melanogaster as a pathway
that determines organ size and of which mutations
lead to tumourigenesis. The pathway is conserved
and plays a role as a tumour suppressor in mammals.
Disorders of the pathway are very frequently detected
in human cancers. Its down-regulation correlates with
the aggressive properties of cancer cells. The pathway
regulates the self-renewal and differentiation of stem
cells and progenitor cells. As the pathway cross-talks
with other signallings such as Wnt, Notch and Sonic
hedgehog (Shh), it influences various biological events
and its dysfunction possibly underlies many human
diseases besides cancer. Accordingly, the Hippo path-
way now fascinates researchers. The number of related
papers is rapidly increasing. The research progress is
enormous. It is difficult to cover everything, so we
briefly introduce and occasionally refer to the
Drosophila Hippo pathway in order to discuss the com-
plexity of the mammalian Hippo pathway, but the
main subject of this review is the mammalian Hippo
pathway. We do not go into the details of molecular
structures and biochemical properties of components.
We refer readers to the other recent reviews (/—7).

Drosophila Hippo pathway

The studies of the pathway have been constantly
fuelled by Drosophila genetics. Table I lists the cur-
rently identified components of the Drosophila Hippo
pathway (Fig. 1). First, Fat and Expanded were iden-
tified as genes that regulate cell proliferation, followed
by Warts (8—11). Merlin was identified as a homologue
of human Merlin/neurofibromin 2 (Nf2), which is re-
sponsible for neurofibromatosis type 2 (/2). However,
the term Hippo pathway was not coined until the dis-
covery of Salvador (/3, /4). Hippo was reported im-
mediately after Salvador (/5—179). The resemblance of
the phenotypes led researchers to the idea that these
genes function in the same pathway. The physical
interactions of the gene products were also confirmed.
Mats was identified as a general inhibitor of tissue
growth and found to function with Warts (20). These
four founding members (Hippo, Mats, Salvador and
Warts) are called the core complex and form a kinase
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Table I. Components of the Drosophila Hippo pathway

Components of the Drosophila
Hippo pathway (gene symbol) Notes

Upstream regulators
Fat/Dachsous complex
Fat (ft) Protocadherin.
Dachsous (ds) Protocadherin.
Four-jointed (fj)
Low fat (Ift)
Dachs (d) Unconventional myosin.
Inhibitor of Warts.

Golgi kinase. Modulator of the interaction between Fat and Dachsous.
Fat- and Dachsous-interacting protein.

No corresponding homologue has been identified in mammals.

Approximated (app)
Discs overgrown (dco)
Crumbs
Crumbs (crb)
Kibra—Expanded—Merlin complex.
Kibra (kibra)
Expanded (ex)
Merlin (Mer)
Core complex
Hippo (hpo)

Casein kinase.

Ste20-like kinase.

DHHC palmitoyltransferase.

A component of the apical polarity complex (Crumbs/Patj/Stardust).

WW domain-containing protein.
FERM domain-containing protein. Willin/FRMD6 is a candidate for the homologue in mammals.
FERM domain-containing protein. Homologue of human Merlin/Nf2.

Homologue of MST1 and MST2.

Salvador (sav)

Mats (mats) Activator of Warts.

WW domain-containing adaptor. Homologue of Savl (WW45).

Homologue of MOB1 and MOB2.

Warts (wts)

Nuclear Dbf2-related kinase.

Homologue of LATSI and LATS2 (Kpm).

Downstream targets
Yorkie (yki)

Transcription coactivator.

Homologue of YAP and TAZ (WWTRI).

Scalloped (sd) Transcriptional factor.

Homologue of TEADI1—4.

Other related molecules
dRASSF (Rassf)
dSTRIPAK (mts)
djub (jub)
Atrophin (atro)
Lgl [1(2)gl]
aPKC (aPKC)

Phosphatase.

Transcription repressor.

Homologue of RASSF1-RASSF6.
LIM domain-containing protein. Homologue of Ajuba.

WD40 repeat containing protein. Component of the basal polarity complex (Lgl/Scrib/Dlg).
Component of the apical polarity complex (aPKC/Par3/Par6).

Upstream regulators of the Drosophila Hippo pathway comprise Fat/Dachsous complexes, Crumbs, and Kibra—Expanded—Merlin complex.
The core complex includes four founding members of the pathway (Hippo, Salvador, Mats and Warts). The downstream targets are Yorkie
and Scalloped. The pathway is also regulated by other molecules such as dRASSF, dSTRIPAK, djub, Atrophi, Lgl and aPKC.

cascade. After that, downstream, Yorkie, a transcrip-
tional coactivator, and Scalloped, a transcriptional
factor, were identified (2/—24), which led to the im-
portant dogma of the pathway. Upon activation of
the pathway, Yorkie is phosphorylated and is trans-
ported from the nucleus to the cytosol, so that
Yorkie-dependent transcription is shut down, which
results in cell cycle arrest and apoptosis. Upstream,
three regulators, the Fat/Dachsous complex, Crumbs
and the Kibra—Expanded—Merlin complex, were iden-
tified. Fat and Dachsous are protocadherins that inter-
act with each other and have been studied in the
context of planar cell polarity (8, 25—28). First, Fat
was demonstrated to act upstream of Hippo and to
be involved in the localization of Expanded (29—31).
Four-jointed (Fj), Approximated (App), discs over-
grown (DCO), Dachs and Lowfat modulate Fat/
Dachsous complex. Fj, a Golgi kinase, phosphorylates
Fat and Dachsous to tune their interaction (32—35).
Dachs and App are negative regulators. Dachs, an un-
conventional myosin, interacts with and negatively
regulates Warts (36, 37). App is a DHHC palmitoyl-
transferase that controls the apical localization of
Dachs (38). DCO, a casein kinase, phosphorylates
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the intracellular domain of Fat (39, 40). Lowfat inter-
acts with the intracellular domains of Fat and
Dachsous, and increases the expression of these pro-
teins (4/). Although whether or not atrophin is a com-
ponent of the Hippo pathway has not been discussed,
it binds to the intracellular domain of Fat and regu-
lates the transcription of Fj (42). Crumbs, which forms
the apical polarity complex with Patj and Stardust,
interacts with Expanded and determines its apical lo-
calization (43, 44). The over-expression of the intracel-
lular domain of Crumbs depletes apical Expanded in a
dominant-negative manner and increases Yorkie activ-
ity (45, 46). Chronologically speaking, Expanded and
Merlin were demonstrated before Crumbs to function
upstream of Hippo (47, 48). Latter, Kibra was found
to form a complex with Expanded and Merlin (49—51).
The Kibra—Expanded—Merlin complex directly inter-
acts with the core complex. Kibra and Merlin bind
Salvador, whereas Expanded binds Hippo. Kibra
interacts with Merlin, and Expanded potentiates this
interaction. Kibra also binds Warts. Additional factors
include Drosophila Ras-association domain family
(dRASSF), dSTRIPAK and djub. dRASSF competes
with Salvador for the binding to Hippo (52). dRASSF
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Fig. 1 Drosophila Hippo pathway. The core of the pathway is a
kinase cascade comprising Hippo and Warts. When the pathway

is activated, Hippo activates Warts, which phosphorylates Yorkie
and turns off Yorkie-dependent transcriptions (block arrows).

The pathway is regulated by the Fat/Dachsous complex, Crumbs
and the Kibra—Expanded—Merlin complex. Fj, Lowfat and DCO
modulate Fat/Dachsous complex. dRASSF suppresses the pathway.
Dachs inhibits Warts and App affects the localization of Dachs.
Djub functions downstream of Hippo and upstream of Warts.

In addition, aPKC and Lgl also influence the pathway.

interacts with dSTRIPAK, a phosphatase, which may
inhibit the phosphorylation of Hippo (53). Thus,
dRASSF antagonizes Hippo signalling. A homologue
of mammalian Ajuba, djub, functions downstream of
Hippo and upstream of Warts to decrease the phos-
phorylation of Yorkie (54). Lethal giant larvae (Lgl), a
component of the lateral polarity complex, and atyp-
ical protein kinase C (aPKC), a component of another
apical polarity complex, indirectly influence the Hippo
pathway. Depletion of Lgl and over-expression of
aPKC result in the mislocalization of Hippo and
dRASSF to the lateral membranes, and induce the ac-
tivation of Yorkie (55). The feedback loop is an im-
portant feature of the pathway. Kibra, Merlin, Fj and
Dachsous are transcriptional targets of the pathway.
Disruption of the Hippo pathway increases Crumbs,
aPKC and Patj, and leads to apical membrane hyper-
trophy, which is independent of the regulation of cell
proliferation (56, 57). In addition to cell adhesion and
cell polarity, the pathway is activated by ionizing radi-
ation in a Drosophila melanogaster p53-dependent
manner (58). Overall, the Drosophila Hippo pathway
instructs each cell as to whether or not it should pro-
liferate and how to build itself according to the

Mammalian Hippo pathway

extrinsic information from the neighbouring cells and
the intrinsic information about the cell condition.

Basal architecture of the mammalian
Hippo pathway

Mammalian homologues have been identified for all
components of the Drosophila Hippo pathway except
Dachs. Most of the core components had been identi-
fied and studied before the emergence of the Hippo
pathway. Merlin was identified as the gene responsible
for neurofibromatosis type 2 (59, 60). Its inhibitory
role in cell proliferation and its biochemical properties
including intramolecular interaction and cell density-
and Rac-dependent phosphorylation have been ana-
lysed (6/—63). Mammalian Ste20-like kinases (MST]1
and MST2) were initially cloned as homologues of
yeast Ste20 kinase and later purified as kinases that
respond to cell stress (64, 65). Large tumour suppres-
sor (LATS) 1 and LATS2 were cloned as homologues
of Drosophila Warts, and their tumour suppressive
properties were studied (66—68). Mps one binder
(MOB) 1 was identified in the gene database as a
homologue of yeast MOBI and proposed to be a po-
tential substrate of protein phosphatase 2A (69, 70).
Yes-associated protein (YAP) was discovered as a pro-
tein that interacts with Yes tyrosine kinase (71).
Interactions with various proteins such as Nat/H*
exchanger regulatory factor (NHERF) 1/Ezrin—
radixin—moesin-binding phosphoprotein (EBP) 50,
p73, Runxl, Runx2, SMAD7, TEA domain family
member (TEAD) 1—4, and ErbB4, have been reported
(72). Transcriptional coactivator with PDZ-binding
motif (TAZ), a paralogue of YAP, was identified as
a 14-3-3-interacting protein (73). The discovery of the
Drosophila Hippo pathway prompted researchers to
combine the mammalian homologues into one path-
way based on these preceding studies. The rough
draft of the mammalian Hippo pathway is as follows
(Fig. 2, centre): Merlin activates the Hippo pathway at
high cell density; MST kinases co-operate with MOBI
and Savl, a homologue of Salvador, to activate LATS
kinases, resulting in the phosphorylation of YAP/
TAZ; and eventually, YAP/TAZ is recruited from
the nucleus and YAP/TAZ-dependent transcription is
shut off to stop cell proliferation and induce apoptosis.

Unresolved upstream regulators of the
mammalian Hippo pathway

In spite of the apparent similarities between the
Drosophila and mammalian Hippo pathways, there
are potential differences. The molecular link between
upstream regulators and the core complex has not been
clarified in mammals as well as in Drosophila. Willin/
4.1 ezrin radixin moesin (FERM) domain-containing
protein 6 (FRMD®) is regarded as an Expanded homo-
logue, but its molecular structure is significantly differ-
ent (74). Kibra binds Expanded, but mammalian
Kibra does not bind Willin/FRMD6 (50). While
Expanded binds Hippo, the interaction between
Willin/FRMD6 and MST kinases has not been
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confirmed (49). The reintroduction of Merlin into
Merlin-deficient Schwannoma cells induces apoptosis,
but RNAI silencing of MST2 does not influence this
apoptosis (75). Although the possibility that MSTI
mediates apoptosis instead of MST2 has not been
excluded, this observation suggests that Merlin does
not function upstream of MST2. In Drosophila, Fat
influences Warts activity through not only Expanded
but also Dachs (36, 37). Mammals appear to have no
Dachs homologue. Drosophila Fat is proteolytically
processed, is phosphorylated by DCO in a Dachsous-
dependent manner, and interacts with atrophin (39, 40,
42). Mammalian Fat4 and Dachsousl organize the
apical membrane (76). Fat4 is proposed to be a puta-
tive tumour suppressor (77). Therefore, Fat4 is likely
to be a Fat homologue. Nevertheless, it has not yet
been directly demonstrated that Fat4 is regulated in
a similar manner to Fat at the molecular level.
Mammals may have alternative upstream regulators.
Merlin binds CD44, which is involved in contact
inhibition (78, 79). CD44 is over-expressed in glioblast-
oma multiforme and the suppression of CD44 aug-
ments the response of Hippo signalling to H,O, (80).
CD44 is likely to be an integral component of the
mammalian Hippo pathway. NHERFI1/EBP50 is
also a well-known binding partner of Merlin, and
is an important player in cancer (8/, 82). The inter-
action of Merlin with NHERF/EBP50 may be more
relevant to the regulation of epidermal growth factor
(EGF) signalling, which is one of the important func-
tions of Merlin, than to the Hippo pathway (83).
However, as YAP and TAZ interact with NHERF1/
EBP50 and NHERF2, respectively, we may as well
regard NHERF proteins as components of the mam-
malian Hippo pathway (73, 84). Thus, the mammalian
Hippo pathway may have additional upstream
regulators.

Complexities of the mammalian Hippo
pathway

The mammalian Hippo pathway is more complicated
than the Drosophila Hippo pathway. One of the rea-
sons for this complexity is that mammals have more
than one paralogue for each Drosophila component.
These paralogues sometimes play redundant roles but
in most cases exhibit distinct properties. Second and
more importantly, the components of the mammalian
Hippo pathway undergo many molecular interactions,
so they exert additional functions and are subject to
additional regulation. For instance, the substrates of
MST kinases include not only LATS kinases and
MOBI, but also c-Jun N-terminal kinase (JNK), his-
tone H2B and FoxO, as discussed below (85, 86). All
of them are implicated in apoptosis. LATS1 interacts
with LIM domain kinase 1 to inhibit its kinase activity
and thereby affects cytokinesis (87). It also binds mito-
chondrial serine protease Omi/HtrA2 to promote the
protease activity (88, 89). Omi/HtrA2 controls cell pro-
liferation through LATSI. If we define the final out-
puts of the Hippo pathway as the regulation of cell
proliferation and cell death, it can be argued that

Mammalian Hippo pathway

these molecular interactions also mediate Hippo sig-
nalling. No matter how we demarcate the Hippo path-
way, we need to consider that activation of the
MST—-LATS—YAP/TAZ axis is associated with paral-
lel activation of other pathways, which co-operate with
the canonical Hippo pathway. In the previous section,
we discussed the potential difference from the
Drosophila Hippo pathway in the upstream regulators.
We will here discuss the divergent molecular inter-
actions mediated by the components of the mamma-
lian Hippo pathway that may add twists to the
overview of the pathway (Fig. 2).

Merlin

Merlin is a FERM domain-containing protein (90—92)
(Fig. 2, top left). Merlin is phosphorylated by p21-
activated kinase at Ser518 and is dephosphorylated
by myosin phosphatase MYPT1-PP16, which is in-
hibited by CPI-17 (93—95). Cadherin-based cell contact
activates MYPTI1-PP18 and increases the unpho-
sphorylated growth-inhibitory Merlin. The molecular
mechanism underlying the contact inhibition has been
intensively studied. In Merlin™/~ cells, EGF receptor
activation and internalization are maintained even at
high cell density (96). Similarly, in Drosophila, Merlin
together with Expanded regulates endocytosis and sig-
nalling by receptors such as Notch (97). These findings
suggest that Merlin mediates this contact inhibition
through the control of membrane receptor distribution
and signalling. After the rediscovery of Merlin as a
Hippo pathway component, the effect of Merlin deple-
tion on the Hippo pathway was studied. In one study,
liver-specific Merlin~/~ mice exhibited extensive prolif-
eration of hepatocytes and bile ducts, and developed
hepatocellular carcinomas and bile duct hamartomas
(98). The phosphorylation of YAP and LATS kinases
was reduced and nuclear YAP increased. Cell over-
proliferation and tumour growth were suppressed by
loss of YAP. This study supports that YAP is a major
effector of Merlin and that the Hippo pathway medi-
ates the contact inhibition. However, in another study,
Merlin~/~ liver exhibited progenitor cell expansion and
did not show any alteration of YAP phosphorylation
or localization (99). The knockdown of YAP did not
recover the contact inhibition. Alternatively, an EGF
receptor inhibitor blocked the over-proliferation of
liver progenitors. The authors consider that the regu-
lation of EGF signalling is the mechanism underlying
the contact inhibition. A recent study revealed that
growth-inhibitory unphosphorylated Merlin is translo-
cated into the nucleus, where Merlin binds and inhibits
E3 ubiquitin ligase CRL4PCAF! to activate growth-
inhibitory gene transcription (/00). These three
functions are not mutually exclusive. Once depho-
sphorylated, Merlin can act as a tumour suppressor
through the up-regulation of the canonical Hippo
pathway, the restriction of EGF signalling, and the
inhibition of CRL4P“AF!,

MST1and MST2

MSTI1 mediates apoptosis through cleavage, auto-
phosphorylation and nuclear translocation (85, 86,
101-103) (Fig. 2, top right). MST2 is also
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cleaved (102). Akt blocks the caspase-dependent cleav-
age through phosphorylation at Thr120 and Thr387 in
MST1, and at Thr117 and Thr384 in MST2 (104—107).
Thr387 of MST1 is dephosphorylated by PHLPP1 and
PHLPP2 phosphatases (/08). MST1 activates JNK,
and this activation causes nuclear condensation (/01,
109). MST1 phosphorylates histone H2B and H2AX
directly or via JNK (710, 111). MST1-FoxO si/gnalling
is not simple. A study involving MSTI '~ mice
demonstrated that MST1-FoxO signalling augments
the resistance to oxidative stress in T cells and pro-
motes survival not apoptosis (//2). However, in the
prevailing view, MST1 induces the translocation of
FoxO proteins and mediates FoxO-dependent apop-
tosis (113, 114). A recent paper reported that MSTI
and MST2 phosphorylate never in mitosis A (NIMA)
kinase, Nek2A, to recruit it to the centrosome, and to
promote the phosphorylation of centrosomal linker
proteins and centrosome splitting (//5). As Savl also
interacts with Nek2A and is necessary for the effect of
MST kinases on Nek2A, this centrosomal function of
MST kinases may also be relevant to the Hippo path-
way. MST1 phosphorylates and inhibits Aurora-B
(116). This inhibition promotes the stability of kineto-
chore—microtubule attachment and prevents chromo-
somal missegregation. P53 is phosphorylated by MST]1
in the presence of death-associated protein 4 (/17).
MST1 directly inhibits Aktl, a pro-survival kinase
(118). RCCI1 is a newly identified substrate of MSTI
and MST2 (/19). The phosphorylation of RCCl1 is
enhanced by RASSF1A and results in the accumula-
tion of guanosine 5'-triphosphate (GTP)-bound RAN.
GTP-bound RAN is involved in the stabilization of
microtubules. All these interactions and phosphoryl-
ations may be related to the tumour-suppressive func-
tion of MST kinases. Intriguingly, one paper reported
that in MST17/~ MST27/~ liver, LATSI and LATS2
are phosphorylated in the activation loop but the phos-
phorylation of YAP is reduced (/20). These findings
mean that LATS kinases can be phosphorylated by a
kinase distinct from MST kinases, and more import-
antly, that MST kinases negatively regulate YAP inde-
pendently of LATS kinases.

Upstream regulation of MST kinases is likewise
manifold. Raf-1 prevents the dimerization and
auto-phosphorylation of MST2 (/2/). RASSF1A re-
leases MST2 from the inhibition by Raf-1 to induce
apoptosis (/22). Other RASSF proteins also modulate
MST kinases, which we will discuss later. Akt pro-
motes the interaction between MST2 and Raf-1,
which means that the inhibition of cleavage is not
the sole way for Akt to regulate MST2 (106). JNK,
which is a substrate of MST1, phosphorylates MST1
at Ser82 and enhances its activity (/23). In Drosophila,
JNK functions upstream of Hippo, but in a different
manner. Tissue damage activates Drosophila JINK in
enterocytes, which increases nuclear Yorkie (7/24).
Although, it has not been directly examined, it can
be inferred that Drosophila JNK suppresses Hippo or
that Drosophila INK regulates Yorkie independently
of Hippo. Drosophila JNK induces cytokine
Unpaired to activate Jak/Stat signalling and to medi-
ate tissue regeneration (125, 126).
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NDR1 and NDR2

Drosophila Warts and mammalian LATS kinases
belong to the Nuclear Dbf2-related (NDR) kinases,
which are conserved from yeast, and play important
roles in cell cycle regulation and cell proliferation (127)
(Fig. 2, top right). Drosophila has an additional NDR
kinase named Tricornered (Trc) (/28). Trc is regulated
by Hippo and Mats (/29, 130). Even so, Trc is not
considered to be a component of the Hippo pathway,
because the Trc mutant shows different phenotypes
from those of Hippo pathway mutants (128, 130).
Mammals have two Trc homologues, NDRI1 and
NDR2, which are activated by MST kinases and
MOBI. NDR1 and NDR2 mediate apoptosis down-
stream of MSTI and RASSF1A (/37). NDRI is
involved in the regulation of centrosome and chromo-
some alignment (//6, 132, 133). NDR1 knockout mice
are predisposed to the development of T cell lymph-
omas (/34). These findings suggest that NDR1 func-
tions as a tumour suppressor through regulation of cell
division and apoptosis. As NDR1 is activated by MST
kinases and MOBI, upon activation of the Hippo
pathway, NDR kinases are supposedly activated as
well as LATS kinases, and contribute to apoptosis
and cell cycle regulation.

LATS1and LATS2

LATS1 and LATS2 negatively regulate cell division
cycle (CDC) 2 and induce G2/M arrest (/135—137)
(Fig. 2, bottom right). LATSI interacts with zyxin
during mitosis, and this interaction is necessary for
normal mitotic progression (/38). A dysfunction of
LATSI induces mitotic delay and the development of
tetraploidity (/39). LATS2 has also been reported to
induce G1/S arrest (/40). Both are localized at the
centrosome. The centrosomal localization of LATS2
is regulated by Aurora-A (/41). LATS2 is associated
with Ajuba and recruits y-tubulin to centrosomes
during mitosis (/42). LATS2 binds Mdm2 and inhibits
its E3 ubiquitin ligase activity to stabilize p53, which
in turn up-regulates the transcription of LATS2
(143). Two papers have reported the implication of
apoptosis-stimulating protein of p53 (ASPP) 1 in the
functions of LATS and YAP (/44, 145). LATS2 phos-
phorylates cytoplasmic ASPP1 to induce nuclear trans-
location (/44). In the nucleus, LATS2 and ASPP1 shift
the binding of p53 to pro-apoptotic gene promoters
from cell cycle regulating gene promoters. In the cyto-
sol, YAP competes with ASPPI for the interaction
with LATS2 and prevents apoptosis. The second
paper reported that cytoplasmic ASPP1 inhibits the
phosphorylation of YAP and TAZ by LATSI, and
increases nuclear YAP and TAZ to promote survival
(145). The authors discuss the possibility that ASPP1
promotes apoptosis if YAP mediates pro-apoptotic
gene transcription in the nucleus. In short, LATS kin-
ases regulate the cell cycle and apoptosis not only
through the phosphorylation of YAP but also in
other ways. As described above, LATS1 and LATS2
are still phosphorylated in the activation loop in
the absence of MSTI or MST2, suggesting that
MST1 and MST2 are not the sole regulators of
LATS kinases (/20). Their expression levels are
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regulated by microRNA-31, -372 and -373, and Heat
Shock Protein 90 (/46—148).

RASSFs

RASSFs are proteins with a Ras-association (RA)
domain (749, 150) (Fig. 2, top right). The human
genome contains 10 RASSF genes. RASSFI1—
RASSF6 have the RA domain in middle regions and
the Salvador/RASSF/Hippo (SARAH) domain in
C-terminal regions. The SARAH domain is a coiled-
coil motif that mediates protein interactions. Savl,
MSTI1, MST2 and Nek20 have this domain. RASSF5
is better known as Norel. RASSF7—RASSF10 have
the RA domain in N-terminal regions and lack
the SARAH domain. RASSF1-RASSF6 correspond
to Drosophila dRASSF. RASSF1 was identified as a
gene encoded on chromosome 3p2l1, which shows
allelic loss in lung cancer (/57). It has two major
isoforms: RASSF1A and RASSFI1C. The suppression
of RASSF1A by hypermethylation of CpG islands is
quite often associated with human cancers. RASSFI1A
mutant mice are susceptible to carcinogens and irradi-
ation (152, 153). These properties established
RASSF1A as a tumour suppressor. Norel was identi-
fied as an Ras effector and implicated in Ras-
dependent apoptosis (754, 155). The interaction of
RASSF1 and Norel with MSTT1 has also been reported
(156). The effect of RASSFIA and Norel on MST1
activity is controversial. RASSFI1A and Norel seem-
ingly inhibit the activity in vitro but stimulate it in vivo.
RASSF1A mediates Fas-induced MSTI1-dependent
apoptosis, which is associated with the activation of
MST1 in vivo (157). The RASSF protein was accepted
as an integral component of the Hippo pathway when
the genetic and physical interaction of dRASSF with
Hippo was demonstrated (52). dRASSF competes with
Salvador for binding to Hippo and acts as a negative
regulator of the pathway. Researchers have noticed,
however, that dRASSF suppresses the overgrowth
phenotype of the Hippo mutant lacking the SARAH
domain but not of the kinase-dead Hippo mutant.
This observation means that dRASSF has a tumour-
suppressor function and paradoxically antagonizes the
tumour suppressor Hippo pathway. In mammals,
RASSF1A has been recognized as a part of the com-
plex including MST2, Savl and LATSI1 (/58). The
in vivo activation of MST2 by RASSFI1A has been
confirmed (722, 158). In response to DNA damage,
RASSFI1A is phosphorylated by ataxia telangiectasia
mutated (ATM) to activate MST2 and LATSI (/59).
Thus, RASSF1A functions as an upstream activator
and mediates Hippo-dependent apoptosis. As
RASSF1A is a well-established tumour suppressor,
this observation is comprehensible but is inconsistent
with the report on dRASSF. We and others have stu-
died RASSF6 that mediates apoptosis in various cells
(160, 161). RASSF6 interacts with MST1 and MST?2
through the C-terminal SARAH domain [(/62),
M. Ikeda’s unpublished results]. A C-terminal trun-
cated mutant of RASSF6, which does not bind MST
kinases, still promotes apoptosis. The knockdown of
LATSI1 or LATS2 does not affect RASSF6-induced
apoptosis. These findings indicate that RASSF6
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mediates apoptosis independently of the Hippo path-
way. The underlying mechanism is not yet clear
enough, but RASSF6-induced apoptosis partially de-
pends on modulator of apoptosis (MOAP) 1, which is
also involved in RASSF1A-induced apoptosis (163,
164). MST2 blocks the interaction between RASSF6
and MOAPI, and inhibits RASSF6-mediated apop-
tosis. This inhibition does not require kinase activity.
Conversely, RASSF6 suppresses the activity of MST2,
possibly by inhibiting homo-oligomerization. Based on
these data, we have proposed a new model. RASSF6
and MST?2 form a complex and mutually inhibit their
functions. Upon activation of MST2, RASSF6 is
released from MST2 and then induces apoptosis.
MST2, which is free of RASSF6, together with Savl
activates LATS kinases. If dRASSF behaves like
RASSFG6, this scenario explains why dRASSF does
not function as a tumour suppressor in the kinase-dead
Hippo mutant. As RASSF6 is highly pro-apoptotic,
the RASSF6-mediated process should significantly
contribute to apoptosis under the condition that the
Hippo pathway is activated.

Because of its importance as a tumour suppressor,
RASSF1 has been intensively studied and diverse
functions are attributed to it. RASSF1A stabilizes
microtubules through various interactions (165, 166).
RASSFIA—MST2—RAN complex is also involved
in this stabilization (//9). RASSF1A interacts with
CDC20 and inhibits an anaphase-promoting complex
(167). RASSFI1A interacts with Aurora-A and
Aurora-B, which are important for prometaphase pro-
gression and cytokinesis (/68—170). RASSF1A pro-
motes the self-ubiquitination of Mdm?2 and activates
the p53-dependent checkpoint (/77). RASSFI1A inter-
acts with F-box protein Skp2 and is degraded by the
SCF complex at the G1/S transition (/72). RASSF1C,
a splice variant of RASSF1A, is anchored by Daxx to
a promyelocytic leukaemia (PML) nuclear body and is
released when Daxx is degraded in response to DNA
damage (/73). RASSFI1C is translocated to the cytosol
and activates stress activated protein kinase/JNK. It is
unclear whether or not these functions of RASSFI1A
and RASSFIC are relevant to the Hippo pathway.
However, all these properties can contribute to the
restriction of cell cycle and cell death.

YAP and TAZ

Mammals have two Yorkie homologues: YAP and
TAZ (71, 174—176) (Fig. 2, bottom left). YAP and
TAZ have similar molecular structures and share
interacting proteins. However, YAP and TAZ are dis-
tinct in some aspects. The most remarkable difference
is that YAP promotes pro-apoptotic gene transcription
(177). In the central dogma, it is presumed that Yorkie
or YAP mediates cell cycle-promoting and anti-
apoptotic gene transcription and that the phosphoryl-
ation of Yorkie by Warts or YAP by LATS kinases
turns off this transcription. However, this premise is
too simple for YAP. WW domains are necessary for
YAP to induce transformation in NIH3T3 cells,
whereas the same domains show an inhibitory effect
in MCFI10A cells (/78). YAP functions in a cell
context-dependent manner. The keys are p73 and
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Akt. In some cells, YAP is mainly localized in the cyto-
sol and its recruitment to the cytosol depends on the
phosphorylation by Akt, not LATS kinases (/79).
Likewise, in some cells, YAP mediates p73-dependent
pro-apoptotic gene transcription. In these cells, the nu-
clear accumulation of YAP leads to apoptosis, while
cytosolic sequestration results in cell survival. Indeed,
YAP plays a tumour suppressive role in some cancers
(180). In HCT116 or H1299 cells, PML interacts with
YAP and recruits it to the nuclear bodies (/87). Then,
p73 is stabilized through sumoylation, so that p73-
dependent transcription is up-regulated. As PML is a
target of p73, a positive feedback loop exists here. Akt
negatively regulates this PML transcriptional activa-
tion by sequestering YAP in the cytosol. In breast
cancer MCF7 cells, YAP forms a complex with
LATSI in the cytosol (/22). RASSFI1A releases YAP
from LATSI, and facilitates the nuclear translocation
and complex formation of YAP and p73. YAP com-
petes with E3 ubiquitin ligase Itch for binding to p73,
and promotes p73-dependent transcription and apop-
tosis (182). In H1299 cells, DNA damage induces the
phosphorylation of YAP by c-Abl and the phosphory-
lated YAP strongly interacts with p73 (/83). Neurons
express a neuron-specific isoform of YAP, which me-
diates atypical neuronal death at least partially de-
pending on p73 (/84). Under all these conditions,
YAP is predisposed to promote apoptosis and thus
the naive idea that the Hippo pathway mediates apop-
tosis by down-regulating YAP is not valid.

The subcellular localization of YAP and TAZ
is modulated through various protein interactions.
Tight junction protein ZO-1 and its isoform, ZO-2,
bind TAZ (185). ZO-2 also binds YAP (/86). Unlike
Z0-1, ZO-2 is localized in the nucleus and is involved
in the nuclear localization of YAP. ZO-2 affects
TAZ-mediated transcription. Mass spectrometry ana-
lysis revealed the co-immunoprecipitation of YAP and
TAZ with the Crumbs complex comprising Pals1, Patj,
MUPPI, Lin7c and Angiomotin (AMOT) (/87). In
Eph4 cells, when the cell density is high, the Crumbs
complex is assembled at tight junctions, facilitates the
phosphorylation of YAP and TAZ, and causes their
accumulation in the cytosol. As the initial studies sug-
gested, YAP and TAZ may be anchored to the plasma
membrane via NHERF proteins. These molecular
interactions as well as the binding to 14-3-3 can deter-
mine the subcellular localization of YAP and TAZ,
and regulate their functions.

Moreover, the regulation of YAP and TAZ does not
necessarily depend only on their subcellular localiza-
tion. When LATS kinases phosphorylate YAP at
Ser381, YAP is further phosphorylated by casein
kinase 1 /e, and targeted for ubiquitination by
SCFPTrC? and degradation (188). TAZ is also a sub-
strate of SCFPT"P (789). Thus, YAP and TAZ are
regulated through protein degradation.

It is clear that YAP and TAZ exhibit oncogenic
activities and contribute to epithelial-mesenchymal
transition (EMT), but it is not clear how they do it
(190—192). The importance of TEAD-mediated tran-
scription has been shown (793, 194). However, the
targets of YAP and TAZ, which directly govern
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oncogenesis and EMT, are not clear enough. AXL re-
ceptor tyrosine kinase was recently identified as one of
the targets of YAP and its implication in oncogenesis
has been reported (7/95). Another paper reported the
importance of Wbp2 in TAZ-mediated oncogenesis
(196). In Drosophila, microRNA bantam is well
known as a target of Yorkie. However, the target
microRNAs of YAP and TAZ have not yet been
reported.

Cross-talk with other signallings

The Hippo pathway cross-talks with other signallings
(197). In Drosophila, Y orkie up-regulates dMyc, while
dMyc represses Yorkie (798, 199). Hippo signalling
activates Notch signalling in posterior follicle cells
and neuroepithelial cells (200—203). Yorkie induces
cytokine-like ligand Unpaired and non-cell autono-
mously activates the Jak/Stat pathway. In mammals,
YAP activation enhances Notch signalling and in-
creases nuclear B-catenin (204). TAZ binds DvI2 and
inhibits its phosphorylation by casein kinases (205). As
this interaction occurs in the cytoplasm, the Hippo
pathway, which induces the cytosolic localization of
TAZ, appears to antagonize the Wnt pathway. YAP
binds SMADI1 and supports SMADI-dependent
transcription (206). In human embryonic stem cells,
TAZ interacts with SMAD complexes and mediates
transforming growth factor-f (TGF-B) signaling
(207). The Crumbs complex interacts with YAP and
TAZ, sequesters SMAD?2/3 complexes, and suppresses
TGF-p signalling (/87). YAP is up-regulated in medul-
loblastomas with aberrant Shh signalling (208). Shh
increases YAP expression and promotes its nuclear lo-
calization. YAP subsequently induces the expression of
Gli2, which regulates Glil. YAP induces amphiregulin
and activates EGF receptor signalling in a non-cell
autonomous manner (209). This cross-talk implies
that disruption of the Hippo pathway can cause per-
turbation in many signal pathways and thereby result
in broad spectrum consequences.

Physiological functions of the Hippo
pathway

Tissue development

The Hippo pathway plays a role at an early stage of
development. During blastocyst formation, the Hippo
pathway is activated in the inside cells through
cell—cell contacts, but is inactive in the outside cells
(210). Consequently, YAP is localized in the nucleus
in the outside cells and induces the expression of troph-
ectoderm regulators, while the inside cells do not ex-
press these regulators and adopt the inner cell mass
fate. Homozygous knockout mice of Merlin, Fat4,
Savl, MST1/2 double, LATS1, LATS2 and YAP are
embryonic lethal or die soon after birth, which under-
scores the importance of the Hippo pathway in develop-
ment (120, 137, 211-217). FAT4~/~ mice develop
polycystic kidneys (212). Epithelial differentiation is im-
paired in Savl™/~ mice (213). YAP deletion in the liver
causes hepatocyte death and abnormal bile ducts (98).
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Loss of TAZ leads to polycystic kidneys and lung
emphysema (218, 219).

Organ size control and tumour suppressive role
Animal models support the importance of the Hippo
pathway in suppression of tumourigenesis. Merlin*/~
mice develop malignant tumours including osteosar-
comas, lymphomas, lung adenocarcinomas, hepatocel-
lular carcinomas and fibrosarcomas (220). Conditional
knockout of Merlin in Schwann cells causes schwan-
nomas (227). MST17/~ mice and MST2~/~ mice de-
velop sarcomas and mammary tumours, respectively,
but at a low frequency (/20). Seventy-four percent of
Sav1*/~ mice have liver tumour (222). LATS1 /'~ mice
have sarcomas and ovarian tumours (2/5). Liver-
specific conditional knockout of MST1, MST2 and
Savl, and activation of YAP demonstrate that the
Hippo pathway indeed regulates the organ size in
mammals, and that its dysfunction leads to hepato-
megaly and tumourigenesis (22, 120, 204, 222—224).
Readers should refer to a recent review for detailed
comparison of these animals (225).

The Hippo pathway is also important for heart size
control and apoptosis. Dominant negative MST1 pre-
vents apoptosis in a myocardial infarction model (226).
Cardiac-specific expression of LATS2 reduces the size
of ventricles (227). Dominant negative LATS2 causes
cardiac hypertrophy and blocks MST1-induced apop-
tosis, supporting that LATS2 functions downstream
of MST1. RASSF1A expression is reduced in the fail-
ing human heart (228). RASSFI1A is up-regulated in
response to pressure-overload and activates MST1 to
induce cardiomyocyte apoptosis (229). The depletion
of RASSFIA in mice enhances cardiac hypertrophy,
while over-expression of RASSF1A increases apop-
tosis and exacerbates cardiac dysfunction under pres-
sure overload. RASSF1A suppresses tumour necrosis
factor-o. (TNF-a)) production in cardiac fibroblasts and
thereby prevents cardiac fibrosis.

Cell differentiation

Both YAP and TAZ are involved in the maintenance
of stemness. YAP mostly inhibits differentiation, but
TAZ induces some differentiation. YAP is expressed in
the crypt compartment of the small intestine and in the
ventricular zone progenitor cells in the mouse neural
tube (204, 230). YAP activation expands progenitor
cells and decreases differentiated cells. In mesenchymal
stem cells, TAZ activates Runx2 to promote osteogen-
esis, and inhibits peroxisome proliferator-activated re-
ceptor v to suppress adipogenesis (237). YAP has been
experimentally shown to repress Runx2 gene transcrip-
tion, but it is unknown whether or not YAP regulates
Runx?2 in mesenchymal stem cells (232). In myoblasts,
TAZ activates MyoD-dependent gene transcription to
promote myogenesis (233). In contrast, during C2C12
cell myogenesis, YAP is phosphorylated and recruited
to the cytosol, implying that YAP-dependent tran-
scription is turned off (234). The interaction of TAZ
with SMAD complexes is necessary for self-renewal
(207). TAZ depletion induces differentiation into neu-
roectoderm. YAP is necessary for the pluripotency of
mouse embryonic stem cells and is inactivated during
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their differentiation (235). YAP facilitates the gener-
ation of iPS cells from mouse embryonic fibroblasts.

Tissue regeneration

The Hippo pathway plays a pivotal role in tissue re-
generation. In Drosophila, when the intestine is under
stress due to bacterial infection or bleomycin, the
Hippo pathway is inactivated in enterocytes to activate
Yorkie and increase Unpaired, which non-cell autono-
mously induces intestinal stem cell proliferation (236,
237). Yorkie activation has also been detected in intes-
tinal stem cells. Similarly, YAP expression is increased
in regenerating mouse intestinal crypts and YAP
depletion impairs regeneration (238).

Others

There was no study that directly addressed whether or
not and how the canonical Hippo pathway functions in
hemopoietic cells. Lymphocytes express MST1 and
RASSF proteins. MST1 interacts with RAPL, which
is a short isoform of Norel and an effector of Rapl
GTPase, in lymphocytes (239). MSTI is activated
downstream of Rapl and RAPL, and is necessary
for cell polarization and integrin LFA-1 clustering
and adhesion (240). MST1~/~ lymophocytes do not
adhere firmly to high endothelial venules and lack ef-
ficient homing capacity. In MST1 ™/~ mice, the egress
of mature T cells from the thymus is impaired, and
lymphocytes are reduced in the blood and peripheral
lymphoid tissues (247). MST1 expression induces
apoptosis in T cells, but paradoxically, in MST17/~
mice, apoptosis of T cells is enhanced, which may be
due to the high activation of T cells (242).

The Hippo pathway and human diseases

Cancer

The importance of the Hippo pathway in cancer devel-
opment is obvious. Mutations of Merlin cause neuro-
fibromatosis type 2, an autosomal dominant multiple
neoplasia syndrome. Mutations of Merlin are found in
sporadic meningiomas and mesotheliomas (243, 244).
RASSFIA and LATS2 are located on chromosomes
3p21.3 and 13ql2.11, respectively. Deletion of both
regions frequently occurs in human cancers. The
RASSFI1A promoter is frequently hypermethylated in
various cancers (/49, 150). The LATS1 and LATS2
promoters are hypermethylated in ~50% of breast
cancers and 60—70% of astrocytomas (245, 246).
Hypermethylation of the MST1 and MST2 promoters
is detected in 37% and 20% of soft tissue sarcomas,
respectively (247). The RASSF6 promoter is hyper-
methylated in >90% of childhood B cell acute lympho-
cytic leukaemia (ALL) and in 40% of T cell ALL
(248). YAP is encoded on chromosome 1122, whose
amplification has been detected in various cancers
(190). Activation of YAP or TAZ induces EMT in
breast cancer cells and increases their invasiveness
(190, 192, 193). Accordingly, the down-regulation of
RASSF1A, LATS1 and LATS?2, the reduced cytoplas-
mic expression of MSTI, and the increased nuclear
localization of YAP in cancer cells correlate with
malignant properties and a poor prognosis (149, 246,
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249-251). Most dysfunctions of the Hippo pathway
components, except Merlin, are caused not by gene
mutations but by epigenetic silencing. This indicates
the possibility that the Hippo pathway function may
be recovered by epigenctic intervention. As Hippo
pathway disorders are common events in cancer and
they correlate with a poor prognosis, the Hippo path-
way is an important and attractive therapeutic target.

Putative implications for other diseases

The crucial roles of the Hippo pathway in the regula-
tion of stem cells and progenitor cells indicate that
dysfunctions of the pathway can cause various diseases
besides cancer. Studies on the heart suggested that
malfunction of the Hippo pathway leads to cardiac
hypertrophy. The observation that both depletion
and over-expression of RASS1A are detrimental for
cardiac function corroborates that appropriate Hippo
signalling is important for tissue homoeostasis. To
suppress tumours, the Hippo pathway should be
active. However, hyperactivity of the Hippo pathway
may increase tissue damage through excessive apop-
tosis and the prevention of tissue regeneration. The
inactivation of TAZ by the Hippo pathway will inhibit
osteogenesis and myogenesis. This means that
over-activation of the Hippo pathway could cause
osteoporosis and muscle atrophy. The suppression of
TNF-a by RASSF1A in the heart is an intriguing ob-
servation. The down-regulation of RASSF1A predis-
poses tissues to an inflammatory response, and may
facilitate atherosclerosis and insulin resistance. EMT
in cancer cells causes metastasis, while EMT in epithe-
lial cells causes fibrosis (252). As YAP and TAZ induce
EMT, their activation may be involved in tissue
fibrosis.

Concluding remarks and future directions

If we discuss only the canonical Hippo pathway, its
framework is apparently simple and straightforward.
It is a kinase cascade that is activated by the initial
input from cell adhesion, cell polarity and cell stress,
and transmits signals to restrict cell proliferation and
induce apoptosis. The pathway explains the
well-known contact inhibition and how damaged tis-
sues are repaired. When some cells undergo apoptosis
under stress or are removed mechanically, the neigh-
bouring cells lose cell adhesion, which turns off the
Hippo pathway. They start to proliferate and might
produce cell proliferation-promoting signals to
induce further cell proliferation non-cell autono-
mously. Proliferation will cease when all cells establish
mature cell adhesion and tissues are repaired.
However, to complete the whole process correctly,
the Hippo pathway needs to be properly regulated at
all stages. The Hippo pathway should be constitutively
and mildly active to prevent overgrowth but avoid cell
death under a static condition. The stimuli that
damage tissues activate the Hippo pathway. The path-
way is speculated to be more activated in more
damaged cells. If the Hippo pathway overwhelms the
cell-survival signals, the cells should die. On the other
hand, the Hippo pathway must be suppressed in the
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cells that have lost matured cell adhesion but escaped
severe damages. Such cells proliferate to repair tissues.
Finally, when tissue repair is completed, the Hippo
pathway must be re-activated at the proper time. For
simplification, we here consider only the case that dif-
ferentiated cells proliferate. Tissues are composed of
diverse cells. Regeneration is carried out by stem cells
or progenitor cells. The Hippo pathway balances cell
proliferation and differentiation. Moreover, as we have
discussed above, the mammalian Hippo pathway is not
necessarily canonical. All circumstances considered
the Hippo pathway requires sophisticated and cell
context-dependent regulation. In the current boom,
new components and new molecular interactions are
continuously being added to the pathway. New
cross-talks with other signallings have been identified.
Each component plays numerous roles and is multifa-
ceted. The network of the Hippo pathway is expanding
and intertwined. It has become more difficult to have
an overview of the Hippo pathway. So far, our under-
standing mostly depends on the information obtained
from knockout mice, knockdown cells and over-
expression of wild-type or mutated components. We
guess how the pathway normally functions based on
the findings that were collected under extreme condi-
tions. In order to understand the roles of the Hippo
pathway in the maintenance of tissue homoeostasis, it
is essential to know what results from perturbation of
the endogenous normal Hippo pathway in cells, tissues
and animals. To this end, we need to have reagents
that inhibit or stimulate the Hippo pathway. Such re-
agents will facilitate the future study in this field and
lead to the development of new therapies for human
diseases.
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